Équivalent à 1,618, le nombre d’or expliquerait la dimension des pyramides d’Égypte, mais aussi le plan des églises. Source d’harmonie et d’équilibre, il serait la clé mathématique de toutes les architectures sacrées. C’est beau mais les preuves de son application au Moyen Âge me semblent légères. Pour le démontrer, je vais avoir besoin de la cathédrale de Paris et d’un hypermarché Leclerc. Et je ne plaisante pas !
Vous avez peut-être vu ces plans d’églises : ils sont recouverts de formes géométriques et striés de droites dans tous les sens.
De ces dessins compliqués, ressort pourtant un principe directeur : le nombre d’or, appelé aussi φ (Phi). Ce nombre est réputé générer des formes aux proportions harmonieuses, équilibrées et esthétiques. Cette « divine proportion » constituerait le secret de la Beauté.
Raison pour laquelle on le retrouverait dans la composition des tableaux de la Renaissance, dans la nature (les coquilles spiralées du nautile) et même dans le visage humain. Fascinant !
À vrai dire, je suis plutôt fasciné par le succès d’un principe qui repose sur du vent. En particulier, je doute que le nombre d’or fût une préoccupation des bâtisseurs de cathédrales. D’une part parce que les preuves historiques de son utilisation sont faibles. D’autre part parce que les auteurs de ces plans fabuleux ne sont pas toujours rigoureux dans leur méthode.
Le nombre d’or : plus qu’un nombre, une proportion
Le nombre d’or équivaut à environ 1,618, mais ces chiffres sont trompeurs. Connu sous le nom de « divine proportion » ou de « section dorée », le nombre d’or est avant tout un concept géométrique.
Et donc, pour une fois, nous allons parler géométrie dans ce blog. Ne fuyez pas. Soyez même rassuré. Mes connaissances sur ce sujet, chèrement acquises sur les bancs de l’école, se sont à peu près toutes envolées. Au point qu’aujourd’hui je maîtrise la géométrie aussi mal que la culture du manioc. Heureusement, la divine proportion, je comprends.
Elle fonctionne sur un rapport magique, comme les mathématiques peuvent parfois nous en offrir.
Prenez ce segment. Il est régi par la proportion dorée. Le rapport entre la plus petite section (a) et la plus grande section (b) est égal au rapport entre la plus grande section (a) et le segment entier (a+b). Soit en termes mathématiques : (a+b)/a = a/b.
Ce rapport sera toujours égal à 1,618 (approximativement, car c’est un nombre irrationnel comme le fameux π). Ou à 0,618 si vous inversez le dénominateur et le numérateur (j’ai encore quelques restes de vocabulaire), soit a/(a=b) = b/a.
Réputé équilibré et harmonieux, ce rapport sert de base à la fabrication de formes, en particulier le rectangle d’or.
Retenez ce rectangle doré, car c’est cette forme que l’on est censé retrouver dans les plans de multiples églises.
La cathédrale de Paris et le nombre d’or
Apparemment, ce rectangle d’or se retrouve sur la plus célèbre cathédrale du monde. En tout cas, c’est ce qu’établit Quentin Leplat, astrogéomètre.
Cette révélation vous a-t-elle foudroyé ? Elle ne devrait pas. La méthodologie de Quentin Leplat et d’autres amateurs d’ésotérisme mathématique cloche pour deux raisons. Pierre Bellenguez et l’historien Alain Guerreau l’ont expliqué avant moi :
- L’auteur utilise un plan ancien (XIXe siècle ?). À cette époque, les dessinateurs n’avaient pas à disposition des outils de mesure aussi précis que les nôtres. Ils avaient tendance également à géométriser les tracés, gommant les irrégularités du plan réel. En vérité, Notre-Dame ressemble à ça :
Sur ce plan, notez l’axe de l’église légèrement brisé, les travées tordues de l’allée centrale de la nef. Résultat, les rectangles d’or ne se révèlent pas si parfaits que cela.
- Autre problème méthodologique, l’auteur intègre dans ses mesures, tantôt la ligne interne des murs, tantôt les contreforts, tantôt les piliers, tantôt l’extérieur des piliers. Par exemple, dans le rectangle de gauche, il s’appuie sur les murs internes de la nef. À droite, il s’appuie sur les murs externes. Et encore, même pas. En haut et en bas, il se fonde plus exactement sur les légères saillies des portails. Autrement dit, l’auteur donne l’impression de prendre les repères qui l’arrangent, les limites qui servent sa démonstration.
Pour enfoncer le clou, l’astrogéomètre identifie un 3e rectangle d’or sur la cathédrale de Paris. Du moins, là encore, en donnant le sentiment de jouer avec les mesures à sa convenance.
Je ne suis pas encore convaincu par la démonstration. Le rectangle d’or n’en est pas un puisque le rapport entre les côtés donne 2,618 et non 1,618.
De plus, les mesures sont contestables. En prenant pour base le plan récent (celui d’Andrew Tallon, plus haut), la longueur de la cathédrale serait 133,5 m (et non 137 m) et la largeur 51,5 m (et non 52,3). Leur division donne environ 2,592 (et non 2,618). Vous trouverez sûrement l’écart infime. Vous jugerez que je suis pris en flagrant délit de chipotage. Je vais vous montrer que la précision sur ce sujet est indispensable. Allons faire des courses.
L’hypermarché Leclerc, temple du nombre d’or
J’ai décidé d’appliquer la méthode de Quentin Leplat sur un bâtiment profane et moderne : l’hypermarché Leclerc de ma ville !
Au contraire des cathédrales, peu d’entre vous attribueront à l’architecte des préoccupations métaphysiques dans son travail. Le plan de ce centre commercial utilise-t-il le nombre d’or ? Eh bien, oui ! Les dimensions extrêmes s’intègrent bien dans un rectangle d’or ! Et on en trouve d’autres à l’intérieur. Confession : je ne me m’attendais pas à autant.
Ne croyez pas que mon intention est de démontrer qu’Édouard Leclerc construit ses hypermarchés selon le nombre d’or. Je voulais surtout vous prouver qu’il est possible de trouver des rectangles dorés pour toutes constructions. Pour peu que le plan soit un peu complexe. Pour peu surtout que vous ne soyez pas rigoureux avec les mesures. Si vous regardez mes schémas, vous remarquerez que les lignes tracées ne collent pas toutes exactement avec les limites des murs. Autrement dit, si vous ne chipotez pas, vous trouverez toujours les mesures qui vous arrangent. Essayez avec votre maison, votre appartement. Prenez les dimensions internes des pièces ou intégrez les murs. Je suis à peu près certain que vous verrez le nombre magique apparaître.
En réalité, le fait que les établissements Leclerc de ma ville entrent dans un rectangle d’or relève du hasard. Depuis son installation dans les années 1990, cet hypermarché a grossi par étapes. Vous distinguez par exemple le toit de la nouvelle jardinerie à droite. On a aussi ajouté un drive. À l’origine, les architectes du bâtiment n’avaient pas prévu cela. Le bâtiment n’avait pas la forme d’un rectangle d’or. Mais, à coups d’extension, le nombre d’or est apparu.
C’est pareil pour Notre-Dame de Paris. Sa forme actuelle résulte d’agrandissements non prévus au départ. Par exemple, dans le monument gothique d’origine, le transept était moins large. Il mesurait environ 38,2 contre 51,5 m actuellement. Dans ces dimensions restreintes, le plan ne s’intégrait pas dans un rectangle doré.
Avant de tracer des rectangles d’or sur les plans d’églises, ne vaudrait-il pas mieux vérifier si ce concept était maîtrisé au Moyen Âge ?
Le mythe récent du nombre d’or
Selon l’historienne Marguerite Neveux, ne nous fatiguons pas à tracer des lignes sur les plans des églises médiévales. Le nombre d’or est une affabulation créée à partir du XIXe siècle.
A cette époque, des penseurs allemands cherchent à fonder la beauté sur des lois, à la manière des sciences dures. Le philosophe Adolf Zeising pense avoir trouvé l’un de ces principes universels : il s’agit du « partage en moyenne et extrême raison », évoqué par Euclide dans l’Antiquité puis renommé « Divine proportion » par Luca Pacioli à la Renaissance. Sa démonstration fait des émules. Des artistes appliquent ce concept dans leur création, comme Marcel Duchamp.
Dans les années 1930, un diplomate roumain Matila C. Ghyka renomme le partage en « nombre d’or » (plus vendeur) et lui cherche une application ancienne et prestigieuse. C’est ainsi qu’il croit retrouver φ dans les pyramides égyptiennes puis dans les tableaux de la Renaissance italienne. Rien ne fonde sa théorie si ce n’est que parfois, ses mesures collent à peu près.
Ghyka et les autres partisans du nombre d’or trouvent des oreilles attentives dans le grand public. Car « il procure l’illusion d’être possesseur des secrets de la création ». « Il est toujours plus facile de relayer des idées sensationnelles que de s’en tenir aux faits, souvent dénués de merveilleux », déplore Marguerite Neveux.
Après la lecture de ce livre, j’ai cru l’affaire pliée. Le nombre d’or, c’est de la poudre aux yeux. Inutile de le chercher dans les églises anciennes. Mais…
Les bâtisseurs du Moyen Âge connaissaient-ils le nombre d’or ?
L’abbatiale Saint-Ouen de Rouen possède un vitrail à la composition rare : son armature de pierre, son remplage, dessine un pentacle, c’est-à-dire une étoile à 5 branches.
Quel rapport avec notre sujet ? Le pentacle ou pentagramme repose sur le nombre d’or.
On a longtemps pensé que la proportion dorée, énoncée par Euclide durant l’Antiquité, tomba dans l’oubli au Moyen Âge. Elle aurait ressuscité à la Renaissance, lorsqu’un mathématicien italien Luca Pacioli la remit au goût du jour.
C’est presque vrai. L’œuvre d’Euclide fut perdue pendant une grande partie du Moyen Âge. Jusqu’au XIIe siècle, lorsqu’elle fut traduite à partir notamment de versions arabes. Dès lors, on reparle en Occident de la proportion dorée (sans qu’elle possède encore ce nom). L’historien des sciences Guy Beaujouan la retrouve dans les ouvrages mathématiques de la fin du Moyen Âge. Elle est employée pour tracer un pentagone ou un dodécagone (polygone régulier à 12 côtés).
Bref, les savants de la fin du Moyen Âge connaissaient Euclide. Mais les bâtisseurs ? Le vitrail de Saint-Ouen semble le prouver. Mais la marche est haute entre appliquer la section d’or pour un dessin original de vitrail et pour un plan d’église. Aucun des traités d’architecture – ils réapparaissent à la fin du Moyen Âge – n’évoque le nombre d’or. Bref, le théorème est connu mais pas forcément appliqué dans les arts.
D’autres clés que le nombre d’or
Si les bâtisseurs de cathédrales n’utilisaient pas les rectangles d’or, comment traçaient-ils leur plan ?
Les historiens et archéologues ne le savent pas dans les détails. Ils sont assez convaincus que les plans se fondaient sur un module, autrement dit une forme de base de dimension fixe. La longueur d’une nef faisait par exemple x fois tel carré. Parfois, les bâtisseurs semblent utiliser la diagonale de ce carré comme mesure première.
Ensuite, les plans étaient tracés selon des rapports de proportionnalité moins complexes que le nombre d’or. Du genre la largeur de l’église fera le tiers de sa longueur. D’après l’historien de l’architecture religieuse Hervé Leblond, « les théories esthétiques médiévales privilégient les rapports simples ». Rapports qui pouvaient s’inspirer des règles de l’harmonie musicale : 3/2 pour une quinte, 4/3 pour une quarte, 4/2 pour un octave.
Parmi ces fractions simples, deux m’intéressent particulièrement : 5/3 et 5/8. Leurs résultats donnent respectivement 1,666 et 0,625. Soit, dans les deux cas, l’équivalent de φ. Là où certains auteurs voient l’application du nombre d’or, il serait tentant d’y voir d’autres significations. Vous comprenez pourquoi je chipotais tout à l’heure. Si on prend des mesures imprécises, une proportion 5/8 (0,625) peut être prise pour une proportion dorée (0,618). Aux dimensions d’une église, la marge d’erreur se joue à quelques dizaines de centimètres ! Aux dimensions d’un plan sur papier, la marge se restreint à quelques millimètres. Et si en prime, le plan est inexact… C’est aussi peu fiable qu’évaluer le temps en comptant les secondes dans sa tête.
Désormais, vous comprenez mieux mon scepticisme vis-à-vis du nombre d’or :
- Même si le concept est connu à la fin du Moyen Âge, aucun document textuel ou iconographique ne prouve son application à l’architecture médiévale.
- Ceux qui cherchent le nombre d’or dans les églises tendent souvent à plier la réalité pour qu’elle s’adapte à leur but. Ils passent outre le fait que le plan qu’ils utilisent est approximatif et que leur tracé du rectangle d’or est imprécis. Enfin, leur méthode fluctue (leur mesure intégrera tantôt l’épaisseur des murs, tantôt les excluront, selon le résultat qu’ils espèrent obtenir). Bref, le contraire d’une démarche scientifique.
Réagissez en commentant au bas de cette page.
Laisser un commentaire